

A Sustainable Community-Based Solution Toward Malaria Reduction In Zambia

Project Vision

- To control the 4th Vector of *Anopheles* mosquito management and reduction of malaria transmission in Zambia
- To support and integrate with existing vector control measures in malaria prevention

How Can We Accomplish This?

 Building mosquito larvae traps of a specific design, made of locally sourced materials, deployed throughout the catchment within zonal village house clusters and breeding sites.

Current EH Vector Management Plan in Rural Zambia

- ITN distribution and usage
- Indoor IRS spraying
- Personal/ Environmental Control Factors:
 - Cutting tall grass
 - Filling of potential standing water sites
 - IEC for malaria control within the community

Project Overview

- OVI-Trap Project addresses 2 of the 4 Vectors of Malaria Management
 - Larval Control
 - IEC: Information, Education, and Communication

Project Sites

- Initial deployment to take place at two sites
 - 1) Mutiti: primary site (pop. Approx 9,500)
 - 2) Chisunka: secondary site (pop. Approx 4,200)
- Intent to spread to additional catchments
 - throughout Luapula Province
 - within greater Zambia

Our Team

Mutiti RHC Project Team:

- Project Head Antoine Katowa, EHT Mutiti RHC
- Lead Project Coordinator Nathan Cutlan, Peace Corps Community Health,
 Mutiti RHC

Chisunka RHC Project Team:

- Project Lead Edwin Kabwe, EHT Chisunka RHC
- Lead Project Data & Adherence Tyler Snow, Peace Corps Community Health,
 Chisunka RHC

<u>Additional Team Consultants:</u>

- Digital Mapping Coordinator Ashley Riley, Peace Corps Community Health
- Training and Curriculum Development Brooke Cutlan, Peace Corps
 Education

OVI-Trap Design and Construction

- Discarded automotive tires
- Bent steel rod, for hanging brackets
- Flexible 2.5 cm hose cut at 15cm for drain
- Attractant-laced water and paper "laying sheets"
- Screw cap from discarded soda bottles for drain plug

OVI-Trap Interior

- Water
- Attractant
- ✓ Milk solution
- ✓ Cedrol solution
- ✓ Pheromone solution
- ✓ Cheese solution
- Paper sheets for gravid Anopheles egg deposit

Anopheles Oviposition

Gravid anopheles need:

- ✓ Water for egg growth
- ✓ A floating substrate upon Which to lay eggs
- ✓ A degree of protection from environmental extremes
- +-200 eggs per mosquito
- Each female deposits a pheromone marker, a signal to other gravid mosquitoes of suitable breeding position
- •The more eggs laid, the more attractive the trap

Project Deployment Plan

- Three point process following the research of Ulibarri, Betanzos, and Rojas (2016):
 - Effective education of designated community health workers to act solely as zonal "ZMAT" Malaria Agents, in the daily maintenance and function of the traps.
 - Procurement of materials for trap construction, deployment, and maintenance
 - Engagement and education of the community to promote participation in the program.

Project Deployment Plan

Utilizing research on attractants isolated to the anopheles genus, determine effective baiting solution to lure gravid females to lay in the traps vs. other environmental breeding sites.

Attractants

- Determine through controlled deployment, effective attractant to yield greatest egg numbers per trap
 - Water (control)
 - Limburger cheese (Knols et al, 1997. 2015)
 - Milk-based solution (Hawaria, et al. 2015)
 - Cedrol (Cedar oil) solution (Varela, et al. 2015)

Determining Attractant Success

- To determine appropriate attractant, four traps will be deployed in March 2017 in close proximity to each other at Mutiti RHC and at Chisunka RHC
 - Control (water), milk based, cedrol, and cheese
 - Daily monitoring and visual analysis of recovered laying sheets via 100x field microscope
 - Over 1 month period, determine most effective attractant for mass deployment

Implementation Specifics:

Training:

- 1-2 team member in each zone (ZMAT) to maintain traps
- Ongoing support and monthly meetings with project team members

District Involvement:

- Possible procurement of materials: tires, fuel, consistent supply of malaria RDT.
- Ongoing and mutual communication (updates, meetings, etc.)

Chain of Communication

Implementation Timeline

Jan-Feb 2017

Procure needed materials

Mar-Apr 2017

- Build 8o OVI traps
- Train ZMAT Members

May-June 2017

 Deploy and test traps at both sites

May-June 2018

- Data review
- Next steps
 (transition team, etc.)

Oct-Apr 2018

- Malaria Season
- Trap maintenance and continued data collection

July-Sept 2017

- Train, assess ZMAT Members
- Trap usage begins

Current Funding

- The initial phase of the Ovi-Trap project is currently funded through a Small Project grant from World Connect (K7,200)
 - This will carry us through the initial phase in Mutiti and Chisunka
 - However, we are seeking future funding to expand if data shows success.

Project Expansion

In order for the OVI-Trap project to expand, based on a successful trial at both sites, future needs would include:

- Trap construction materials (donation or purchase)
- Continued funding for training and maintenance
- Future leadership and catchment expansion
- Continued district approval and support

OVI-Trap Added Benefits

- Utilizes and repurposes available local materials (tires, soda tops, old hose, etc.)
- Employs local workers
 - metalsmiths, other laborers
- Involves community health workers by providing them with additional training, knowledge, and responsibility
- Provides a low-resource, chemical-free method of vector control to reduce malaria

Research

- **Braack, Hunt, Koeckmoer (2015)** Biting behaviour of African malaria vectors: 1. where do the main vector species bite on the human body? *Parasites and Vectors* 8:76
- Hawaria, Santiago, Yewhawlaw (2015) Efficient attractants and simple odor baited sticky trap for surveillance of Anopheles arabensis in Ethiopia. *The journal of Infection in Developing Countries* 10(1) 82-89
- Knols, Van Loon, et al. (1997) Behavioural and electrophysical responses of the female malaria mosquito Anopheles Gambiae (Diptera: Cullicideae to Limburger cheese volatiles) *Bulletin of Entomological Research* 87, 151-159
- Onyabe, Conn (2001) The distibution of two malaria vectors, Anopheles Gambiae and And Anopheles arabiensis, in Nigeria. *Men Inst. Oswaldo Cruz, Rio De Janiero* 96: 1081-1084
- Ulibarri, Betanzos, Rojas (2016) Control of *Aedes Egypti*, A prospective evaluation of integrated web-based Health Worker training, low-cost Ovillantas, and community engagement In a remote Guatemalan community vulnerable to Dengue, Chickungunya, and Zika Virus. *F1000 Research* 5:598
- Varela, Karlson, Torto (2015) Discovery of an oviposition attractant for gravid malaria vectors of the Anopheles Gambiae species complex. Malaria Journal 14:119